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Abstract—Motivated by the field of compressed sensing and
sparse recovery, nonlinear algorithms have been proposed for
the reconstruction of synthetic aperture radar images when the
phase history is under-sampled. These algorithms assume exact
knowledge of the system acquisition model. In this paper we
investigate the effects of acquisition model phase errors when
the phase history is under-sampled. We show that the standard
methods of autofocus, which are used as a post-processing step
on the reconstructed image, are typically not suitable. Instead of
applying autofocus as a post-processor, we propose an algorithm
that corrects phase errors during the image reconstruction. The
performance of the algorithm is investigated quantitatively and
qualitatively through numerical simulations on two practical
scenarios where the phase histories contains phase errors and
are under-sampled.

Index Terms—Synthetic Aperture Radar, autofocus, Com-
pressed Sensing, Sparse Recovery, Blind Calibration, Block
Relaxation Methods, Phase Retrieval

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active ground
imaging system which is based on the coherent processing

of multiple radar echoes. Typically, the reconstructed image
is formed from the stored echos (phase history) using a
linear approximation of the pseudo-inverse, e.g. polar format
algorithm (PFA), range migration algorithm (RMA) or filtered
back-projection. The approximate pseudo-inverse is an inverse
which is defined on a finite region of the spatial frequency
support of the reconstructed complex image. The size of this
support is defined by the transmitted RF signal bandwidth and
the size of the synthetic aperture. Ideally the reconstructed
image would have a rectangular support in the spatial fre-
quency plane so that the point spread function (PSF) would
be a two-dimensional sinc function. This is approximately the
case in systems where the synthetic aperture is uniformly
sampled and the transmitted RF signal has a contiguous
bandwidth. However, in a number of interesting non-standard
SAR scenarios, this will not be true.

Two such systems that we will consider in this paper are
multifunction and ultra wide band (UWB) SAR. In a multi-
function SAR system, the radar antenna is used for multiple
tasks which causes interruptions in the uniform acquisition of
SAR data along the synthetic aperture [1], [2]. In the case
of UWB SAR, the transmitted signal spectrum is broad and
may contain frequency sub-bands that are in use by other
communications systems or where transmission is not allowed.
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To avoid interference, notch filters are commonly used in
the transmitter and/or the receiver to avoid using these sub-
bands [3], [4].

In both of these scenarios defining an inverse on an ap-
proximately rectangular spatial frequency support is ill-posed.
Fig. 1 demonstrates why a rectangular support is sought by
comparing the PSF of a rectangular spatial Fourier support and
a randomly under-sampled aperture. In the PSF of the under-
sampled aperture, unlike the ideal PSF, a significant amount
of the target energy is contained in the side-lobes. Clearly this
is undesirable. In order to make this problem well-posed, an
appealing idea is to apply the tools and theory of compressed
sensing (CS) and sparse recovery, for example [5] and [6].

The theoretical results of CS are based on exact knowledge
of the linear acquisition system, however, in practical situa-
tions, such a system cannot be perfectly known. This is the
case in SAR where the received phase history may contain
significant phase errors due to imperfect system modelling.
Methods for correcting these errors in fully-sampled systems
are known as autofocus algorithms and are most commonly
used as a post-processing method on the reconstructed image.

All autofocus algorithms require a signal model for ei-
ther the phase errors and the image or both. Additionally,
many algorithms make a far-field and small aperture angle
approximation so that the phase errors are constant along the
range axis of the reconstructed image. One of the earliest
autofocus algorithms to be developed was the mapdrift (MD)
algorithm [7]. MD estimates the phase errors based on a
low-order polynomial model for the phase errors along the
cross-range direction. Phase gradient autofocus (PGA), one
of the most commonly used algorithms, requires the phase
errors along the cross-range direction to vary smoothly and
also requires the image to contain isolated point scatterers [8].
Recently another algorithm, multichannel autofocus (MCA),
has been proposed which requires the focused image to contain
a known region which is almost zero [9]. Although these post-
processing autofocus methods have been very successful for
correcting phase errors in fully-sampled scenarios, they may
not be suitable for under-sampled SAR.

The algorithm proposed in this paper for image reconstruc-
tion and autofocus of a under-sampled phase history has simi-
larities with the proposed method in [10]. Although the method
proposed in [10] primarily concentrates on the fully-sampled
scenario it does demonstrate that it is also applicable to the
under-sampled scenario. Both methods involve approximately
solving the same non-convex problem but our algorithm has
some additional practical benefits. Firstly, it can be shown to
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Fig. 1. PSF for full-sampled and under-sampled almost rectangular spatial
Fourier supports: (a) is the fully-sampled support and its PSF is given in (b).
(c) is the under-sampled support and its PSF is given in (d).

be stable and it produces a sequence that convergences to a
set of connected set. Secondly, it empirically converges in a
significantly smaller number of iterations.

A closely related problem which has been investigated in
the signal processing literature in the last few years is the
problem of phase retrieval, e.g. [11] and [12]. The goal of
phase retrieval is to recover a complex signal from magnitude
only measurements. The SAR imaging and autofocus problem
is equivalent to the phase retrieval problem if we ignore all
phase information due to a belief that it is corrupted. In these
papers a technique known as “phase-lifting” is used to pose
a convex problem which is solved to recover the signal. This
technique involves “lifting” the signal so instead of recovering
x ∈ CN the algorithm recovers X = xxH ∈ CN×N . This
process is likely to be very costly computationally and will
likely make these techniques infeasible for SAR systems.

Contributions of the paper

The main contributions of this paper are as follows. We
show using CS theory and numerical simulations that standard
post-processing autofocus methods are unsuitable for under-
sampled SAR. We analyse under what conditions the image
reconstruction and autofocus problem is well-posed. Also, we
propose a new algorithm that correct phase errors within the
image reconstruction algorithm. Empirically, we show that that
this algorithm converges faster than existing methods and then
theoretically we show that it is stable and convergent, which
cannot be said of the existing algorithms. We also verify the
performance using two practical scenarios.

Organisation of the paper

In Section II a brief background on relevant CS results
is provided. Then in section III a SAR acquisition model
is developed which includes phase errors. In Section IV
the expected performance of existing post-processing auto-
focus methods in a CS framework are investigated. Inherent
ambiguities in the under-sampled phase error problem are
analysed in Section V. A reconstruction algorithm for under-
sampled SAR with phase errors is proposed in Section VI.
Finally experimental simulations in Section VII are used to
demonstrate the effectiveness of the proposed algorithm.

Notation

The following is a description of the notational conventions
used within this paper.

Matrices and vectors will be denoted by upper and lower
case boldface symbols respectively (e.g. X and x). Elements
of matrices and vectors will be lower case lightface and will
be indexed by subscripts, e.g. the element in the mth row and
the nth column of a matrix X is denoted by xmn.

The complex conjugate of a complex scalar x will be x∗

and the complex conjugate transpose of a vector or matrix
will have a superscript H, e.g. XH. X† is used to indicate the
pseudo inverse of X .

We define diag{x} to be a square matrix with the elements
of the vector x along its main diagonal. Re{x} will denote
the real part of a complex scalar x.

The following notation is for matrix and vector norms. ‖.‖0
denotes the “counting norm” which is equal to the number of
non-zero elements in a vector or a matrix. ‖.‖F and ‖.‖1 are
element-wise two and one matrix norms respectively. Finally,
‖h‖2 = sup {‖h(X)‖F with ‖X‖F = 1} is the operator norm
of a linear operator h.

II. COMPRESSED SENSING: BACKGROUND

CS theory provides a theoretical framework which can be
used to analyse the reconstruction performance of an under-
determined linear system, e.g.

y = Ax+ n,

where, y ∈ CM are the measurements, A ∈ CM×N is the
system model, x ∈ CN is the original signal and n ∈ CM
is complex Gaussian noise for M < N . Without any further
information, the best approximation, in the MMSE sense, of
x is given by the pseudo inverse A†y. However, using the
tools of CS we may be able to produce a better estimate if
x is sparse or well approximated by a sparse signal in an
orthogonal basis, i.e.

x = Ψα,

where, Ψ ∈ CN×N is an orthogonal basis and α ∈ CN is
either a sparse vector, i.e. ‖α‖0 ≤ K for K � N , or is close
to its best K-term approximation αK , i.e. ‖α−αK‖2 ≈ 0.
As well as the sparsity conditions on x we also require
certain conditions on the matrix AΨ to hold. A property
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that is commonly used to define sufficient conditions on AΨ
is the so-called restricted isometry property (RIP) [13]. A
matrix A satisfies the (symmetric) RIP of order K if for all
vectors x with no more than K non-zero entries there exists a
(symmetric) RIP constant δK < 1 which satisfies the following
inequalities:

(1− δK) ‖x‖22 ≤
∥∥∥Âx∥∥∥2

2
≤ (1 + δK) ‖x‖22 . (1)

If x satisfies the sparsity conditions and AΨ satisfies a
2K order (symmetric) RIP with RIP constants that satisfy the
following inequality:

δ2K <
3

4 +
√

6
≈ 0.46515, (2)

then x can be stably reconstructed from y using the following
convex optimisation program [14]:

minimise
α

‖α‖1
subject to ‖y −AΨα‖2 ≤ σ.

(3)

The solution of Eq. (3), x̃ = Ψα̃, will be stable in the
following sense

‖x̃− x‖2 ≤ C1,Kσ + C2,K
‖x− xK‖1√

K
, (4)

where, σ = ‖n‖2 and C1,K and C2,K are constants [15].
In words, our solution will be bounded by something that is
proportional to the noise energy σ and the error associated
with the best K-term approximation of x.

Although there is no computationally efficient way to check
Eq. (2) for arbitrary matrices there are interesting asymptotic
results for random matrices. One such result [16] is if A is
formed from M < N random columns of a Fourier matrix and
Ψ is an identity matrix then with overwhelming probability
the matrix A satisfies Eq. (2) if M is of the order

M = O(K log4(N)) (5)

This result motives the use of CS theory for under-sampled
SAR. If the under-sampled SAR observation matrix is similar
to a randomly under-sampled Fourier matrix and our image
contains only a small number of bright targets in clutter we
may be able to make a good approximation of the image by
solving a convex optimisation program.

III. SAR GENERATIVE MODEL WITH PHASE ERRORS

Since SAR systems are a coherent imaging system, the
round trip propagation delay to a reference position in the
scene must be estimated at each position along the aperture.
In spotlight mode SAR this reference point is the scene centre.
Errors in this estimate, which can be due to a non-idealised
propagation medium or inaccuracies in the inertial navigation
system, introduce unknown phase errors into the acquired
data. If not corrected, phase errors can degrade and produce
distortions in the reconstructed image.

If we consider a simplified spotlight-mode SAR system after
dechirp-on-receive, adding a delay error τe at each aperture
position produces the following discretized system model [17],

ykl = ejφkl

M∑
m=1

N∑
n=1

xmn exp
{
−j(2umnk

c
− τ0) (ω0 + 2α (lTs − τ0))

}
,

(6)
where, Y = {ykl} ∈ CM ′×N ′

is the phase history, X =
{xmn} ∈ CM×N are the scene reflectivities, {φkl} = (ω0τek

−
ατ2

ek
)+2ατek

(lTs−τ0) ∈ CM ′×N ′
are the phase errors which

result from the delay errors, {umnk} ∈ RM×N×M ′
are the

distances between each element in the scene and each aperture
position, c is the speed of light, τ0 is the true propagation delay
to the scene centre, Ts is the range sampling period, 2α is the
chirp rate and ω0 is the carrier frequency. If we neglect the
effects of the linear phase term, which is a valid approximation
in most systems where τe � Ts, the discrete SAR observation
model with phase errors becomes:

Y = diag
{

ejφ
}
h (X) , (7)

where, h : CM×N → CM ′×N ′
is a linear map that models the

ideal SAR observation model (the summation in Eq. (6)) and

φk = ω0τek
− ατ2

ek
(8)

are the phase errors.
Clearly, without further assumptions, the problem of recov-

ering φ and X from Y is ill-posed if M ′ = M and N ′ = N ,
since there are only MN equations and M(N+1) unknowns.

IV. CS WITH POST-PROCESSING AUTOFOCUS

Most post-processing autofocus methods make a far-field
and small aperture angle approximation in the SAR acquisition
model [17], i.e. the image was formed using a separable two-
dimensional imaging method such as range-Doppler imag-
ing [18]. Under the separable approximation and assuming we
sample at exactly the Nyquist rate in range and cross range,
the system can be modelled as the following LHS and RHS
matrix multiplication:

Y = diag
{

ejφ
}
AXB, (9)

where,

amn = exp{ − j(2π(m− 1)(n− 1)/M−
(m− 1)π − (n− 1)π +Mπ/2)}

and

bmn = exp{ − j(2π(m− 1)(n− 1)/N−
(m− 1)(2πωo/2αT − π)−
(n− 1)π +Nπ/2− 2ωoL/c)}

are the elements of the cross-range matrix A ∈ CM×M and
the range matrix B ∈ CN×N , respectively, where, L is the
scene radius and T is the chirp period.

Since, A is essentially a Fourier matrix, we can rewrite the
observation model in Eq. (9) as Y = AΨXB, where, Ψ is a
circulant matrix which may be viewed as a filter in cross-range
direction for each range bin.
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When fully-sampled, recovering ΨX from Y is straight
forward because A and B are invertible. Post-processing
autofocus algorithms recover X from the filtered image ΨX ,
by using a signal model for Ψ and/or X .

When Y is under-sampled in either range or cross-range
the observation model will be:

Y ′ = AΨXB′ (10)

or

Y ′ = A′ΨXB, (11)

where, A′ ∈ CM ′×M is a M ′ < M row subset of A
and B′ ∈ CN×N ′

is a N ′ < N column subset of B.
With this model, unlike in the fully-sampled situation, A′

and B′ are not invertible. However, CS results can be used
analyse the expected reconstruction quality of ΨX when it is
reconstructed by solving Eq. (3).

If the under-sampling is random, a sufficient order for the
number of cross-range samples required for stable reconstruc-
tion is O(K log4(M)), for, K = Kψm

KX , where, Kψm
and

KX are the maximum required number of non-zero elements
needed to accurately approximate the rows of Ψ and the
columns of the true image X , respectively. The reconstruction
is stable in the sense that the columns of the recover image
Ψ̃X satisfy Eq. (4).

It is clear that the number of samples required for a stable
reconstruction scales with Kψm

and thus the introduction
of phase errors increases the number of samples required
for stable reconstruction. For this reason, in most cases,
post-processing autofocus methods are unsuitable for under-
sampled SAR.

V. UNIQUENESS

It is well known that there are inherit ambiguities in the
autofocus problem which prevent the problem having a unique
solution. The formulation in Eq. (9) is known to be ambiguous
to constant and linear phase errors [17].

A sparsity based necessary condition for the uniqueness of
the autofocus problem can be given which is dependent on the
observation model h and the signal model of the scene X . It
is given as follows:

h
(
X̃
)

= diag {d}h (X) ⇐⇒ X̃ = βX, (12)

∀β ∈ {β ∈ C : |β| = 1}

and

∀(X̃,X,d) ∈
{
X̃ ∈ X ,X ∈ X ,d ∈ D

}
,

where,

X =
{
X ∈ CM×N : ‖X‖0 ≤ K

}
,

i.e. we know the scene has at most K scatters, and

D =
{
d ∈ CM

′
: |dm| = 1

}

is the set of all possible phase errors,
If Eq. (12) is satisfied then the problem is unique up to a

scalar β multiplication of the true X , i.e. X̃ = βX , and the
solutions are given by the following program:

minimise
X,d

‖X‖0

subject to diag {d}Y = h (X)
d∗mdm = 1, m = 1, . . . ,M,

(13)

where, ‖.‖0 measures the number of non-zeros matrix ele-
ments.

Eq. (12) states that the phase error free observation model
h must have the property that the phase history of a sparse
image cannot be equal to a phase error corrupted phase history
of a difference sparse image.

In Appendix A, we give additional conditions for the
uniqueness of the separable model where we have sub-
sampling only in the cross-range direction.

VI. SPARSE RECONSTRUCTION AND AUTOFOCUS

In this section our goal is to design algorithms which
perform sparse reconstruction and autofocus and are able
to be solved or approximately solved in a polynomial time.
To this end, the non-convex function ‖X‖0 in Eq. (13)
is replaced with its closest convex function ‖X‖1 and the
equality constraint is replaced with an inequality constraint
that accommodates noise. This results in:

minimise
X,d

‖X‖1

subject to ‖diag {d}Y − h(X)‖F ≤ σ
d∗mdm = 1, m = 1, . . . ,M.

(14)

Even though our objective function is now convex, Eq. (14) is
still non-convex because the inequality constraint is not linear
and therefore does not define a convex feasible set.

In order to use gradient based methods, which are usually
used in large scale problems such as SAR reconstruction,
the objective must be smooth. Therefore it is convenient to
exchange to the inequality constraint and the objective in
Eq. (14) to form the equivalent program:

minimise
X,d

‖diag {d}Y − h(X)‖2F

subject to ‖X‖1 ≤ τ
d∗mdm = 1, m = 1, . . . ,M.

(15)

Note, there is a one-to-one map, γ : σ → τ if 0 ≤ σ ≤ ‖Y ‖F.
Even though the problem is still non-convex, importantly, in
each set of variables X and d –with the other fixed– we have
a unique solution. This observation allows us to use a block
relaxation type method which can be used to approximate the
solution and has been found to be effective in the related
problem of dictionary learning [19].

Block relaxation methods approximately solve Eq. (15) by
iteratively solving the problem based on a single parameter
block, X or d, at a time.
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A. Minimisation based on X

Consider Eq (15) when d is fixed, i.e.

minimise
X

f(X,d)

subject to ‖X‖1 ≤ τ,
(16)

where,
f(X,d) = ‖diag {d}Y − h(X)‖2F . (17)

A method used for solving Eq. (16) is a technique known
as “majorisation minimisation”. This technique replaces the
objective function with a majorising surrogate function which
is much easier to solve. A function g is said to majorise f if
f(ω) ≤ g(ω, ξ) and f(ω) = g(ω, ω),∀ω and ξ ∈ Υ, where,
Υ is the parameter space. A surrogate function can be derived
for (17) by expanding it as a Taylor series and bounding its
curvature (d2f ) [19]. This surrogate function is:

g(X,X‡,d) = ‖diag {d}Y − h(X)‖2F−∥∥∥h(X)− h(X‡)
∥∥∥2

F
+

LX

∥∥∥X −X‡∥∥∥2

F
,

(18)

where, LX > ‖h‖22. Replacing the objective function with its
surrogate function, Eq. (16) becomes

minimise
X,X‡

g
(
X,X‡,d

)
subject to ‖X‖1 ≤ τ,

(19)

which is a minimisation based onX and a surrogate parameter
vector X‡. In this program, if X is fixed, the minimum of
Eq. (19) occurs at X‡ = X and if X‡ is fixed the minimum
occurs at

minimise
X

‖X −C‖F

subject to ‖X‖1 ≤ τ,
(20)

where, C = X‡+ 1
LX

hH(diag {d}Y −h(X‡)). The solution
of Eq. (20) is the projection of C onto an `1 ball with a
radius of τ . There are efficient methods to exactly compute
this projection [20].

By minimising Eq. (19) based on either X‡ and X in an
alternating fashion, X‡ and X will converge to the solution
of Eq. (16) [21]. In practice a feasible LX can determined
using a backtracking line-search.

B. Minimisation based on d

Consider Eq. (15) when X is fixed, which (ignoring con-
stant terms) is given by:

minimise
d

tr
{
−2 Re

{
diag

{
dH
}
h(X)Y H

}}
subject to d∗mdm = 1, m = 1, . . . ,M.

(21)

The unique solution of Eq. (21) can be found analytically
by,

d = ej∠diag{h(X)Y H}. (22)

C. Non-convex Block Relaxation

A block relaxation of Eq. (15) is produced by solving
Eq. (16) and Eq. (21) in an alternating fashion which is
described in the following pseudo code:

Algorithm 1 A(X,d)
Output: X,d

repeat
X‡ ←X
X ← D(X,d)
d‡ ← d
d← ej∠diag{h(X)Y H}

until ‖X−X‡‖F‖X‡‖−1
F < threshold∧‖d−d‡‖2‖d‡‖−1

2 <
threshold

Where, D solves Eq. (16). The approaches used in [10],
[22] and [23] are of this form. This type of method is stable,
assuming we can solve D, i.e. we exactly solve Eq. (16) at each
iteration. In practical algorithms where only an approximate
solution at each iteration is obtained, no stability analysis
exists.

Another way to create a block relaxation is to use the
surrogate parameter X‡ as an additional parameter block, i.e.

minimise
X,X‡,d

g
(
X,X‡,d

)
subject to ‖X‖1 ≤ τ

d∗mdm = 1, m = 1, . . . ,M.

(23)

For this relaxation, as long as Eq. (23) is always solved
based on X‡ after solving based on X the solution for
each sub-problem is easily commutable and the complete
algorithm is known to be stable and guaranteed to converge
to an accumulation point or a connected set of accumulation
points, see [19, Proposition B.3]. The pseudo code for this
algorithm, when phase minimisation occurs at each iteration,
is as follows:

Algorithm 2 B(X,d)

Initialise: Lx > ‖h‖2F
Output: X,d

repeat
X‡ ←X
C ←X‡ + 1

Lh
H
(

diag {d}Y − h
(
X‡
))

X ← Pτ (C)
d‡ ← d
d← ej∠diag {h(X)Y H}

until ‖X−X‡‖F‖X‡‖−1
F < threshold∧‖d−d‡‖2‖d‡‖−1

2 <
threshold

Where, Pτ (C) projects C onto an `1 ball with a radius of
τ . It is interesting to note that this algorithm can be seen
as a generalisation of Algorithm 1. An additional benefit
of Algorithm 2 is that it is likely to converge faster than
Algorithm 1. This is because Algorithm 1 will likely oscillate
around the optimum path.
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VII. EXPERIMENTAL RESULTS

In these experiments we investigate the performance of
Algorithm 1 and Algorithm 2 using under-sampled phase
histories that contain phase errors.

A. Quantitative Performance

In the first experiment we investigate the empirical con-
vergence rate and reconstruction performance of Algorithm 1
and Algorithm 2. In order to easily compare with post-
processing autofocus techniques, we consider the separable
model, Eq. (9). In this experiment the scene consists of a small
number of constant amplitude point targets randomly placed in
the scene. The under-sampling consists of selecting a random
subset of the fully-sampled synthetic aperture. Two different
phase errors were consider: quadratic phase errors φm =
γ((m− 1)/M)2 which model platform velocity measurement
errors and normally distributed phase errors φm = N (0, γ2).
The parameters for the synthetic model are in Table. I.

TABLE I
SAR SYSTEM PARAMETERS FOR SYNTHETIC EXPERIMENTS

parameter value
carrier frequency (ωo) 2π × 10× 109 rad/s
chirp bandwidth (2αT ) 2π × 150× 106 rad/s

scene radius (L) 50 m
number of targets 20

signal to noise ratio 0 dB

1) Convergence: In this experiment we compare the num-
ber of iterations it takes Algorithm 1 and Algorithm 2 to reach
the stopping criterion when the threshold is 10−6. In order to
fairly compare the two algorithms we compute the operation D
in Algorithm 1 using the “majorisation minimisation” method
from Section VI-A. We also define the number of iterations in
each algorithm to be the total number of times the gradient of
the objective function has to been computed with respect to
X . We select this definition because the main computational
cost of both algorithms is consumed by computing this gra-
dient, therefore, the iterations count will closely rate to the
algorithm’s execution time. We choose to show the results for
normally distributed phase errors with γ = 10. This is because
the type and magnitude of phase errors was found to have only
a minor effect on the results.

As expected Fig. 2(a) shows that Algorithm 2 requires many
less iterations than Algorithm 1. This will likely be due to
the minimisation path of Algorithm 1 oscillating around the
optimal minimisation path.

A technique known as continuation has been found to be
useful for increasing the numerical convergence rate of `1
sparse recovery algorithms when there is no phase errors [24].
Continuation involves varying the value of τ during the
iterations of the algorithm. The motivation for this technique
is based on the observation that the convergence rate depends
on τ . The smaller than value of τ , the faster the algorithm
will converge. Therefore, a method of continuation is to start
with a small value of τ and increases its value in the following
iterations until it reaches the desired final value.
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Fig. 2. Comparison of empirical convergence rates: (a) ‘�’ Algorithm 1 and
’×’ Algorithm 2. (b) ‘�’ Algorithm 2 with continuation and ’×’ Algorithm 2.

In order to further improved the convergence rate of our
algorithm we experimented with a continuation scheme. Al-
though we did not see any singularity in the modified algo-
rithm with this setting, the convergence and stability would
need to be proved in the future.

In this simulation we used a continuation scheme that
involved changing τ during the first I iterations by the rule
τi = iτ/I for i = 1, . . . , I . The selection of a “good” I
depends on the under-sampling so we used the following
values of I for each under-sampling percentage.

TABLE II
CONTINUATION PARAMETERS

sampling
ratio (%) 20 26 32 38 44 50 56 62 68 74

I 30 20 10 5 3 2 1 1 1 1

Fig. 2(b) shows a small improvement in performance when
continuation is used. Another method for reducing the required
number of iterations would be to use a more aggressive step
size, similar to what is used is other `1 sparse recovery
algorithms. Using this type of step size, the stability of the
algorithm cannot be guaranteed but in practise it may also be
useful.

2) Reconstruction Error: In order to assess the image
reconstruction performance of the autofocus methods we de-
fine an image quality metric. Since the autofocus problem is
ambiguous to scalar multiplication by β ∈ {β ∈ C : |β| = 1}
and cyclic permutation, we define a metric that is immune to
these ambiguities. We will refer to this metric as relative SNR
and define it as:

minimise
β,n

10 log10


∥∥∥X̃∥∥∥2

F∥∥∥X̃ − βP nX
∥∥∥2

F


 ,

where, n ∈ Z and
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Fig. 3. Phase error induced filters: the rows of Ψ for quadratic and random
phase errors with different γ. Quadratic: (a) γ = 0.1 (c) γ = 1 (e) γ = 10.
Random: (b) γ = 0.1 (d) γ = 1 (f) γ = 10.

P =


0 0 . . . 0 1
1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0

 .

Fig. 4 shows the reconstruction performance of oracle post-
processing autofocus and Algorithm 2 with different phase
errors. We do not show the results of Algorithm 1 because
the results are virtual identical. We refer to the oracle post-
processing autofocus because we use a `1-norm spectral
projected gradient (SPG) method [21] to recover the filtered
image and then correct it to recover the image using oracle
knowledge of the phase errors. To provide an empirical upper-
bound, we also show the reconstruction performance that can
be achieved with oracle knowledge of the phase errors and
also the locations of the targets, we refer to this as the oracle
reconstruction. The magnitude of the corresponding filters
for each of the phase errors, the rows of Ψ, are shown in

reference chirp
aperture positions and target 

reflectivities and locations

simulated returned signal for each aperture postion

timing errors

dechirp and IF filtering 

sample and de-skew (remove quadratic phase term)

output phase history

Fig. 5. block diagram for generating a simulated phase history

Fig. 3. As predicted in Section IV, as the value of Kψm

increases, corresponding to an increase in γ, the performance
of post-processing autofocus techniques decreases, while the
performance of Algorithm 2 is consistent.

B. Qualitative Performance

In these experiments we wish to show that the presented
algorithm works on realistic simulations of our two motivating
scenarios, i.e. multifunction and UWB SAR. The scene used
in both simulated scenarios consists of four point targets which
reflect back an equal amount of energy. Fig. 5 is a block
diagram which illustrates the basic elements used to create
the simulated phase histories. Firstly, the analog signal that
would be received at each aperture position is simulated by
summing scaled and delayed versions of the transmitted chirp
where the scaling and delay correspond to the reflectivity
and the signal travel time for each point target. For each
position an additional delay is added to the analog received
signal to model system inaccuracies. Each analog signal is
then dechirped and IF filtered which simulates the analog
receiver in a dechirp-on-receive system. Finally The analog
to digital sampling is simulated by down sampling the signals
to a sample rate proportional to the IF bandwidth and the
Residual Video Phase (RVP) term is removed.

1) UWB SAR: As mentioned previously, under sampling
occurs is in a UWB SAR system when notches are introduced
into the transmitted chirp in order to avoid interference with
other users. In this simulation we used a notched linear
frequency chirp which had a spectral density that is given
in Fig. 6. The chirp contains five notches which equate to a
nulling of approximately 20% of the chirp spectrum.

The other parameters of the simulation are given below.
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Fig. 4. Reconstruction performance versus under-sampling ratio: ‘◦’ oracle reconstruction, ‘�’ Algorithm 2 and ‘×’ oracle post-processing autofocus.
Quadratic: (a) γ = 0.1 (b) γ = 1 (c) γ = 10. Random: (d) γ = 0.1 (e) γ = 1 (f) γ = 10.
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Fig. 6. power spectral density of notched linear frequency chirp

TABLE III
SYSTEM PARAMETERS FOR SIMULATED UWB SAR

parameter value
carrier frequency (ωo) 2π × 308× 106 rad/s
chirp bandwidth (2αT ) 2π × 324× 106 rad/s

IF bandwidth 2π × 20× 106 rad/s
altitude 7000 m

stand-off distance 7000 m
aperture length 7000 m

number of aperture samples 200
scene radius (L) 75 m
number of targets 4

signal to noise ratio 0 dB
timing errors N (0, 80× 10−11) s

2) Multifunction SAR: In this simulation a randomly under-
sampled aperture of a X-band SAR system is used simulate

a multifunction SAR system. The phase history contains a
50% random subset of the fully-sampled aperture. The other
parameters of the simulation are given below.

TABLE IV
SYSTEM PARAMETERS FOR SIMULATED MULTIFUNCTION SAR

parameter value
carrier frequency (ωo) 2π × 10× 109 rad/s
chirp bandwidth (2αT ) 2π × 600× 106 rad/s

IF bandwidth 2π × 30× 106 rad/s
altitude 7000 m

stand-off distance 7000 m
aperture length 250 m

number of aperture samples 300
scene radius (L) 75 m
number of targets 4

signal to noise ratio 0 dB
timing errors N (0, 2.5× 10−11) s

For both scenarios, three SAR images where formed using
different reconstruction methods. One image in each scenarios
was generated using filtered back-projection without any form
of autofocus. Another was generated using 20 iterations of
a `1-norm SPG method again without any form of autofocus.
The last image was created using 20 iterations of the modified
Algorithm 2 which uses continuation with I = 15. The
final value of τ was selected to be the sum of the absolute
values of the target reflectivities. However, the reconstruction
performance was found to be not particularly dependent on
this parameter. In a real system a suitable τ could be selected
with only a coarse degree of parameter tuning. In the iterative
reconstruction algorithms both the observation model and its
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adjoint (h(.) and hH(.)) are computed using the fast (re/back)-
projection algorithms from [23].

The resulting images from both simulation scenarios are
contained in Fig. 7 and Fig. 8. It should be noted that these
images have had been padded with zeroes in the spatial Fourier
domain to make the images twice the size of the reconstructed
images. This is done to more clearly display the point targets
which are sometimes unable to be clearly viewed when they
consist of only a single or a small number of non-zero pixels.

Fig. 7(a) and Fig.8(a) demonstrate the adverse effects of
phase errors and under-sampling. The side-lobes of the four
targets contain a large amount of energy which deteriorates the
SAR image quality. The images in Fig. 7(c) and Fig.8(c) which
were produced using an `1 sparse recover algorithm have
an improved visual quality over the previous images due to
the sparsity promoting algorithm. However, due to the model
inaccuracies there are a large number of non-zeros pixels that
may be mistaken for additional targets. Finally, Fig. 7(e) and
Fig.8(e) show the results of Algorithm 2. In these images
the energy from each target is highly concentrated around
the target locations. It is clear, therefore, in these scenarios
Algorithm 2 can produce a visually improved SAR image, with
a rectangular spatial Fourier support and a sparse number of
point targets, from a phase history that is under-sampled and
contains model inaccuracies.

VIII. CONCLUSION

We have investigated the effects of phase errors on a under-
sampled SAR system. We have shown that post-processing
autofocus algorithms are typically unsuitable when there is
under-sampling and a sparse reconstruction method is em-
ployed. Instead, phase errors should be corrected during image
reconstruction.

We have proposed a new algorithm that corrects phase errors
within the image reconstruction algorithm. Algorithm 2, which
is an algorithmically stable generalisation of a recently pro-
posed non-convex sparsity based autofocus method, performs
consistently well for a variety of phase errors and under-
sampling ratios and was found empirically to converge in a
much smaller number of iterations.

We have also demonstrated through additional realistic
simulations that Algorithm 2 could be used in practical non-
standard SAR image reconstruction systems to produce sparse
SAR images from a under-sampled phase histories which
contain model inaccuracies.

APPENDIX A

Using ideas from the dictionary learning literature [25] we
can define a set of sufficient conditions for the uniqueness of
φ and X given Y ′ = diag {d′}A′XB. These conditions are
as follows:

1) the spark condition: any 2KX columns of A′ are
linearly independent

2) the columns of X have exactly KX non-zero elements
3) for each of the

(
M
KX

)
possible KX -sparse supports, there

are at least KX + 1 columns of X

4) any KX + 1 columns of X which share the same
support, span a k-dimensional space

5) any KX + 1 columns of X , which have different
supports, span a (KX + 1)-dimensional space

Proposition 1 (see [25, Theorem 3]): If the above con-
ditions hold then there is a unique X̃ which satisfies Y ′ =
diag

{
d̃′
}
A′X̃B. Where uniqueness is up to a unit magni-

tude scalar β and a circular permutation P n of the true X ,
i.e. X̃ = βP nX

As is the case in dictionary learning, the richness condition 3
is completely unrealistic for compressively sampled SAR.
However, this condition is only sufficient and is likely to be
very pessimistic. It should also be noted that recovering the
uniqueness solution involves solving Eq. (13) which requires
combinatorial many operations to solve and is unsuitable for
practical problems that involve noise.
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Fig. 7. UWB SAR image reconstructions: (a) was reconstructed using filtered back-projection, (c) was reconstructed using an `1-norm SPG method and (e)
was reconstructed using Algorithm 2. (b), (d) and (f) are a zoomed in view of (a), (c) and (e) respectively.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

meters

m
e

te
rs

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

(a)

meters

m
e

te
rs

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

meters

m
e

te
rs

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

(c)

meters

m
e

te
rs

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

meters

m
e

te
rs

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

(e)

meters

m
e

te
rs

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)

Fig. 8. Multifunction SAR image reconstructions: (a) was reconstructed using filtered back-projection, (c) was reconstructed using an `1-norm SPG method
and (e) was reconstructed using Algorithm 2. (b), (d) and (f) are a zoomed in view of (a), (c) and (e) respectively.


